
Compared to traditional solvers: Classical methods such as FEM/FDM are designed to solve a PDE once for a1

given parameter. In contrast, our method approximates the solution operator of a PDE i.e. the mapping from parameter2

to the solution. The goal of this work is to propose a data-driven surrogate model which offers flexibility in downstream3

applications as it can produce accurate approximations cheaply and quickly, rather than propose a method for solving4

PDEs. Our method is consistent in function space i.e. the error is independent of the resolution of the input or output5

functions which is a crucial property for application that very few deep learning methods posses.6

• Traditional solvers: solve one instance of the equation at a time; require the explicit form of the PDE; have a7

speed-accuracy trade-off based on resolution: accurate on fine grids, less accurate on coarse grids.8

• Neural operator: learn a family of equations from data; don’t need the explicit knowledge of the equation; much faster9

to evaluate than any classical method; no training needed for new equations; error rate is consistent with resolution.10

Example: inverse problem of 1-d Burgers’ equation: Suppose we wish to use a function-space MCMC method to11

find the Bayesian solution of the inverse problem associated with the 1-d Burgers’ equation: given a noisy solution at12

time 1, we wish to sample the distribution of possible initial conditions. This requires tens of thousands of evaluations13

of the equation with different initial conditions. Using the classical approach with which we generate our data (details14

in Appendix), each forward run takes around 2 seconds, which amounts to 28 hours of computation time for 50,00015

MCMC steps. Our approach approximates each solution in only 0.01 seconds, amounting to 8 minutes of computation16

time. The computational savings are much further embellished when considering more complex PDEs.17

Review 1: Thank you for the detailed review and helpful suggestions. Methods like those in Chebfun are not designed18

for parametric equations and are much slower compared to our method; we are happy to add a demonstrative example.19

Furthermore, conservation properties are kept so long as they are in the data; we are happy to add an example.20

• Technicality: While we agree that certain sections are more mathematically formal than others, we have done this in21

order to balance reader comprehension with page-limit requirements. We believe it is important to concretely way22

out our problem of interest while not so important to give the correct function space every time.23

• Figure: We appreciate your figure suggestion and would be happy to use it with your permission.24

• Graphs: While we agree that our methodology can be stated without graphs or GNNs, they are currently the only25

efficient deep learning tool for implementing it. Furthermore graphs allow for a straight forward extension to domains26

that are manifolds, a direction we wish to pursue in the future.27

• Complexity: We measure complexity in terms of the sparsity of K as this is what affects all computations. Originally28

this complexity is O(n2). Truncating the integration reduces it to O(n2rd) (r < 1), while the Nyström approximation29

brings this to O(m2rd) (m � n). These approximations are indeed used throughout the V-cycle, a point we will30

clarify in our revision. (line 140. - 152.)31

• Presentation: Note that u(x) cannot be identically zero, please see the cited theorem. Furthermore we treat f(x) as32

fixed and therefore omit it from the architecture. While we agree that the approximation from (2) to (5) is not precise,33

neither is neural network design. We simply use it as guiding principle, combining it with deep learning intuition34

such as the addition of the W matrix which makes learning K easier.35

Review 2: Thank you for your comments. Please note that our work considers both 1-d and 2-d problems (Section 4).36

• MgNet: While MgNet is an interesting work, it is substantially different from ours. In particular, they employ the37

multigrid method which is based on a residual correction while we use the multipole method which is based on38

a decomposition of the integral kernel. Furthermore our graph-based convolutions allow our method to achieve39

consistent error for any discretization while continuous convolutions are tied to a particular grid due to their local40

parameterization. Lastly, MgNet is only applied to image classification tasks (Cifar) while we do function to function41

regression, arguably, a much more general task. We would be happy to add a citation and will try to include a42

numerical comparison in the final version, but unfortunately their code is currently not online.43

• Other methods: While methods such as PINNs and Deep ritz are interesting, they are not suitable for our goals.44

They both require solving a non-convex optimization problem for each parameter of interest which is slow and costly45

(weeks of computation for the above inverse problem). Such methods are useful when the underlying physical domain46

is high dimensional and FEM becomes infeasible, but this is not a setting our work considers. In the parametric47

setting, we are not aware of any methods with better accuracy than ours.48

Review 3: Thank you for your nice suggestions. We designed our method to approximate parametric PDEs and49

therefore never tested it on standard graph datasets such as Cora. While this is an interesting future direction as quickly50

processing global information on large graphs is crucial in applications, it is well beyond the scope of the current work.51


